Empirical Failure Pressure Prediction Equations for Pipelines with Longitudinal Interacting Corrosion Defects Based on Artificial Neural Network

نویسندگان

چکیده

Conventional pipeline failure pressure assessment codes do not allow for prediction of interacting defects subjected to combined loadings. Alternatively, numerical approaches may be used; however, they are computationally expensive. In this work, an analytical equation based on finite element analysis the API 5L X52, X65, and X80 corroded pipes with a longitudinal corrosion defect loadings is proposed. An artificial neural network (ANN) trained obtained from (FEA) varied spacings, depths lengths, axial compressive stress were used develop equation. Subsequently, parametric study effects spacing, length, depth, pipe was performed demonstrate correlation between geometries pipes, using The new predicted pressures these grades coefficient determination (R2) value 0.9930 error range ?10.00% 1.22% normalized spacings 0.00 3.00, effective lengths 2.95, 0.80, 0.80.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...

متن کامل

Empirical Correlations and an Artificial Neural Network Approach to Estimate Saturated Vapor Pressure of Refrigerants

The examination of available vapor pressure data in the case of the methane, ethane, propane and butane halogenated refrigerants, allowed recommendations of standard equations for this property. In this study, three new models include a general correlation; a substance-dependent correlation and an artificial neural network (ANN) approach have been developed to estimate the saturated vapor press...

متن کامل

Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique

Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...

متن کامل

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Marine Science and Engineering

سال: 2022

ISSN: ['2077-1312']

DOI: https://doi.org/10.3390/jmse10060764